biPCPG

Release 0.1.0

Carlos Saenz de Pipaon

Mar 24, 2022

1 biPCPG
1.1 References

2 Installation

3 Tutorial

CONTENTS:

3.1 Dataset StruCtUIC v v v v v v v e
3.2 Computing the average correlation matrix oo e e e e
3.3 Computing the PCPG network e
3.4 Computing edge bootstrap values L e e e

4 Code documentation

4.1 PCPG class
4.2 Correlations

Functions e e e

4.3 Bootstrap functions e e e e e e e

4.4 Util function

5 Theory
5.1 Partial Corre
5.2 References

6 Indices and tables
Python Module Index

Index

S e

lation Planar Algorithm L

17
17
18

19

21

23

CHAPTER
ONE

BIPCPG

This package implements the Bipartite PCPG (biPCPG) algorithm!, a generalisation of the Partial Correlation Planar
Graph (PCPG) algorithm”. The PCPG is a correlation-filtering method for the construction of networks intended for
use on multivariate time series datasets with a single sample. The biPCPG framework generalises this approach to
allows its use on similar datasets containing multi-sample multivariate time series.

The biPCPG package offers three main tools:
* Handling the dataset, via the reshape_year matrices_to_time_series_matrices() function.
* Applying the PCPG, via the PCPG class.
 Performing a bootstrap on the PCPG network’s edges, via the get_bootstrap_values() function.

We recommend having a look at the tutorial to get started.

1.1 References

! Saenz de Pipaon Perez C, Zaccaria A, Di Matteo T. Asymmetric Relatedness from Partial Correlation. Entropy. 2022; 24(3):365. <https:
//doi.org/10.3390/e24030365>

2 Kenett DY, Tumminello M, Madi A, Gur-Gershgoren G, Mantegna RN, Ben-Jacob E (2010) Dominating Clasp of the Financial Sector Revealed
by Partial Correlation Analysis of the Stock Market. PLoS ONE 5(12): e15032. <https://doi.org/10.1371/journal.pone.0015032>

https://github.com/cspipaon/biPCPG/blob/master/docs/tutorial.rst
https://doi.org/10.3390/e24030365
https://doi.org/10.3390/e24030365
https://doi.org/10.1371/journal.pone.0015032

biPCPG, Release 0.1.0

2 Chapter 1. biPCPG

CHAPTER
TWO

INSTALLATION

In order to install the bipcpg package clone (or download and unpack) the latest version from Github. From the folder
containing biPCPG’s setup.py file run:

pip install .

For example:

git clone https://github.com/cspipaon/biPCPG.git
cd biPCPG
pip install .

To install in an Anaconda virtual environment (recommended) with the required packages:

git clone https://github.com/cspipaon/biPCPG.git

cd biPCPG

conda create --name <env_name> python=3.8 --file requirements.txt -c conda-forge
conda activate <env_name>

pip install .

where <env_name> should be replaced by the desired name of the virtual environment.

https://github.com/cspipaon/biPCPG

biPCPG, Release 0.1.0

4 Chapter 2. Installation

CHAPTER
THREE

TUTORIAL

The bipcpg package facilitates the computation of a Partial Correlation Planar Graph (PCPG) network for datasets
with a bipartite structure, as well as the preparation of the data for this purpose and a bootstrapping procedure to assess
the reliability of the edges in the network. Below we give an example of how to apply these methods to a toy dataset
consisting of countries and the products they export with the aim of obtaining a PCPG network with products as nodes.

3.1 Dataset structure

Consider a bipartite dataset containing the quantity (in millions of dollars) of a set products exported by a set of
countries. In this toy example, assume we have data for 4 countries, 4 products over a 5 year span with one data point
per year. Lets denote the countries c; to cg4, the products p; to p4 and the years y; to ys. Furthermore, denote the
quantity of exports a given country does of a given product in a given year by e¥,,.

This sort of dataset is usually distributed as a collection of tables indexed over time containing the data for that given
year. Following our example, we would have the following tables or matrices.

For the first year y;:

P b2 P3 P4
c | edlp | €p, | Cpy | €l
C2 eg;m 6321172 egzlPB egzlpz;
3 egépl egslpz egéps 610/31)4
€4 egim ezc]ipz egclips egipz;

for the second year y»:

P1 P2 P3 Pa
‘1 egfpl ezcjfpz ezc}121)3 eg12174
Co | €&y | €Gp, | €y | Clipy
e eggpl elégpz e:ggpa eg:s%IM
€4 egipl eé’jm Ggfm 6351)4

and similarly for years ys3, y4 and ys.

In order to use such a dataset with the bipcpg package, we have to reshape the data such that, instead of having a
matrix per time index, we have a matrix per element of one of the two sets of variables. These matrices should have
rows representing time indices and columns representing the complementary set of variables. In our example, instead
of a matrix per year, we could reshape the dataset into either a matrix per country or a matrix per product. If we shape
the data such that we have one matrix per country and apply the Bipartite PCPG (biPCPG) algorithm, we would obtain
a network whose nodes are products, and vice versa.

biPCPG, Release 0.1.0

Given we want to obtain a network of products, we need to reshape our data such that we have four matrices, one per
country, containing the export time series for each products as columns. Using the notation introduced above, these
matrices have the following structure:

The matrix for country c;:

P1 P2 p3 P4
Y1 | eip | Clipy | Cpy | Cp,
Y2 ezc!fpl 620112172 egfpe, egfm
Y3 egfpl egfpz 6313 p3 egfm
Ya egfpl €gfp2 egfps egfp4
Ys egfpl egfpz egf P3 egfzm

the matrix for country cs:

P1 P2 P3 P4
Y1 | €hp) | CGpy | Chpy | Cps
Y2 626!5171 eggpz eggpe, eg§p4
Y3 eggpl Egg’m eggps eggm
Ya egspl egs;ﬂz eggps ef‘%}u
Ys eggpl eggpz 6gg’p3 eggm

and similarly for countries c3 and cy4.

Now lets see how the above translates into code. Take the following dataset, with a matrix per year as an example:

>>> import numpy as np

. dataset = [np.array([[1.2, 3., 1., 5.4], # y_1 data
[10.2, 8.8, 11.7, 15.2], #
[181.7, 99.7, 104.2, 103.8], #
[1001.9, 1002.7, 1000.7, 1004.7]1]1), #
np.array([[0.1, 5.2, 4.5, 4.2], ## y_2 data
[9.1, 12.2, 13.4, 11.7], ##
[185.5, 102.9, 106.5, 101.9], ##

[1004.4, 999.4, 1001.8, 1005.2]1]1), ##
np.array([[1.3, 2.3, 1., 5.9], ### y_3 data
[15.4, 14., 12.6, 15.8], ##t#

[98.9, 103.2, 100.5, 104.2], ###

[1000.9, 1003.8, 1002.6, 1006.6]11), ###
np.array([[0.9, 4., 4.9, 0.6], #### y_4 data
[11.4, 12.4, 11.7, 14.7], HHHH
[98.4, 103.4, 104.3, 104.9], #H#H
[1006.3, 1003., 1003.4, 1002.8]11), ####
np.array([[2., 0.5, 5.9, 3.1], ##### y_5 data
[11.7, 16.4, 15.7, 14.9], BHRAAH
[104.2, 102.3, 105., 104.4], HHARH

[999.6, 1003.3, 1005.3, 1003.7]11)] #####

Recall that each array in the list dataset represents the exports (in millions of dollars) for a given year, where rows
represent countries and columns represent products. We would therefore have:

« ey, =$1.2M =dataset[0][0][0] * 10%*6

¢1p1

o e¥2 =$102.9M = dataset[1][2][1] * 10**6

C3p2

6 Chapter 3. Tutorial

biPCPG, Release 0.1.0

e e¥4 =$11.4M =dataset[3][1][0] * 10%**6

C2P1

Now let’s see how we can convert the dataset with a matrix per year into a timeseries_dataset with one matrix
per country. In order to do the necessary reshaping we simply do:

>>> from bipcpg.utils.utils import reshape_year_matrices_to_time_series_matrices
. timeseries_dataset = reshape_year_matrices_to_time_series_matrices(dataset)

Note that reshape_year_matrices_to_time_series_matrices() converts this into a list of country matrices,
i.e. the rows of the matrices in dataset, not the columns. We therefore get:

>>> timeseries_dataset

[array([[1.2, 3. , 1. , 5.4],
[6.1, 5.2, 4.5, 4.2],
[1.3, 2.3, 1. , 5.9],
[60.9, 4. , 4.9, 0.6],
[2. , 0.5, 5.9, 3.11D),

array([[10.2, 8.8, 11.7, 15.2],

[9.1, 12.2, 13.4, 11.7],

[15.4, 14. , 12.6, 15.8],

[11.4, 12.4, 11.7, 14.7]7,

[11.7, 16.4, 15.7, 14.9]11),
array([[101.7, 99.7, 104.2, 103.8],

[1605.5, 102.9, 106.5, 101.9],

[98.9, 103.2, 100.5, 104.2],

[98.4, 103.4, 104.3, 104.9],

[104.2, 102.3, 105. , 104.4]11),
array([[1001.9, 1002.7, 1000.7, 1004.7],

[16004.4, 999.4, 1001.8, 1005.2],

[16000.9, 1003.8, 1002.6, 1006.6],

[1006.3, 1003. , 1003.4, 1002.8],

[999.6, 1003.3, 1005.3, 1003.7]11)]

‘We now have each matrix in the list timeseries_dataset representing a country with the export time series as its
columns. This is the desired format any dataset should have in order to apply the biPCPG algorithm.

3.2 Computing the average correlation matrix

The input to the PCPG algorithm, which is the last step in the biPCPG algorithm, is a correlation matrix. However,
a bipartite dataset consists of a collection of multiple samples of data (in our toy example above, multiple countries
each exporting multiple products), so the application of the PCPG algorithm to this dataset is not straightforward.
To circumvent this problem, the approach taken in the biPCPG algorithm is to compute a correlation matrix for each
country and then take the element-wise average of these matrices. This yields a single average correlation matrix which
can then be used as the input to the PCPG algorithm.

In order to do this using the bipcpg package, we simply take the dataset in a format like timeseries_dataset, this
is a collection of matrices with observations (which form time series in our example) along its columns and do the
following

>>> from bipcpg.correlations import get_correlation_matrices_for_list_of_matrices

. correlation_matrices = get_correlation_matrices_for_list_of_matrices(timeseries_
—dataset)

. avg_correlation_matrix = np.nanmean(correlation_matrices, axis=0)

3.2. Computing the average correlation matrix 7

biPCPG, Release 0.1.0

>>> avg_correlation_matrix

array([[1. , -0.29375 , 0.11955 , -0.093725],
[-0.29375 , 1. , 0.252425, -0.0146 1,
[0.11955 , 0.252425, 1. , -0.4743257,
[-0.093725, -0.0146 , -0.474325, 1. 1D

as expect from the linearity of the time series in timeseries_dataset, correlation coefficients are all equal to one. Itis
important to note that get_correlation_matrices_for_list_of_matrices() computes the correlations among
the columns of the matrices in the input list. Also, to filter the returned correlation matrices based on a statistical T-test,
we can pass the desired critical_value for the p-values, for example 0.05, as an argument like this:

>>> filtered_correlation_matrices = get_correlation_matrices_for_list_of_
—matrices(timeseries_dataset,

—critical_value=0.05)

>>> filtered_correlation_matrices

[array([[1. , -0.979757, nan, nan],
[-0.979757, 1. , nan, nan],
[nan, nan, 1. , nan],
[nan, nan, nan, 1. 1D,

array([[1., nan, nan, nan],
[nan, 1., nan, nan],
[nan, nan, 1., nan],
[nan, nan, nan, 1.]]),

array([[1., nan, nan, nan],
[nan, 1., nan, nan],
[nan, nan, 1., nan],
[nan, nan, nan, 1.1]1),

array([[1., nan, nan, nan],
[nan, 1., nan, nan],
[nan, nan, 1., nan],
[nan, nan, nan, 1.]1)]

These np.nan values are the result of the filtering of non-statistically significant correlations. This is expected given
the very small sample size in our toy dataset.

3.3 Computing the PCPG network

Once we have a correlation matrix, or in the example above, an average correlation matrix avg_correlation_matrix
we can begin to compute the PCPG network. To do this, first instantiate the PCPG class passing the correlation matrix
as an argument

>>> from bipcpg.pcpg import PCPG
. pcpg = PCPG(avg_correlation_matrix)

we then compute the average influence (see Theory section) values among the variables in the system

>>> pcpg.compute_avg_influence_matrix()

8 Chapter 3. Tutorial

biPCPG, Release 0.1.0

>>> pcpg.avg_influence_matrix

array ([[nan, -0.01044544, -0.02817951, 0.01193706],
[-0.04052413, nan, -0.03887709, 0.01047045],
[-0.00396688, -0.04729008, nan, -0.0946936],
[0.0182888 , -0.01188309, 0.00370091, nan]])

After computing the avg_influence_matrix we are able to generate the a networkx.DiGraph object of our PCPG
network by doing:

>>> pcpg.create_network()

>>> pcpg.network
<networkx.classes.digraph.DiGraph object at 0x7f9bc5559f10>

We can check which edges have been included in pcpg.network using networkx:

>>> pcpg.network.edges()
OutEdgeView([(®, 1), (1, 3), (1, 2), 2, ®, 3, ®, (3, 22D

or directly via the class attribute edges:

>>> pcpg.edges
(3, ®, (1, 3, 3, 2), 2, ®, O, L, 1, 2)]

3.4 Computing edge bootstrap values

In order to assess the reliability of a PCPG network’s edges we can perform a bootstrap procedure on the dataset
timeseries_dataset. As detailed above in Dataset structure, this should be an iterable containing matrices whose
columns contain observations for one of the the two sets of variables in a bipartite dataset with a matrix for each variable
in the complementary set of variables.

To obtain a pandas.DataFrame containing the edge bootstrap values we simply have to do

>>> from bipcpg.bootstrap import get_bootstrap_values
. bootstrap_values = get_bootstrap_values(timeseries_dataset, num_replicates=1000)

where num_replicates is the number of replicates to be generated in the bootstrap procedure. As when computing
correlations for the average correlation matrix (see Computing the average correlation matrix). This gives the following
results, which may vary when repeated as the bootstrap procedure involves a random resampling of the rows in each
matrix in timeseries_dataset:

>>> bootstrap_values

0 1 2 3
0.000 0.897 0.222 0.288
0.099 0.000 0.660 0.606
0.774 0.315 0.000 0.264
0.708 0.377 0.721 0.000

w N~

bootstrap_values is a pandas.DataFrame containing the bootstrap values of the directed edges in the PCPG net-
work. For a given entry in this dataframe, the row index is the edge’s source and the column index is the edge’s target.
In our example the entry bootstrap_values.loc[2, 0] = 0.774 is the bootstrap value of the edge from product
ps3 to product p;. Note the bootstrap_values dataframe includes the bootstrap values for all pofential edges in a

3.4. Computing edge bootstrap values 9

biPCPG, Release 0.1.0

PCPG network generated from the timeseries_dataset. However, the pcpg.network found above will contain
only a part of these.

Also note that critical_value argument could also be passed to get_bootstrap_values() which would filter
correlations based on a T-test as described in Computing the average correlation matrix.

Note bootstrap_values is a pandas.DataFrame containing the bootstrap values of the directed edges in the PCPG
network. For a given entry in this dataframe, the row index is the edge’s source and the column index is the edge’s
target.

These bootstrap values could be added as an attribute to pcpg.network we obtained previously by doing:

>>> pcpg.add_edge_attribute(attr_data=bootstrap_values, attr_name='bootstrap_value')

and we can check the attributes that edges have:

>>> import networkx as nx
. nx.get_edge_attributes(pcpg.network, 'bootstrap_value')
{0, 1): 0.897, (1, 3): 0.606, (1, 2): 0.66, (2, 0): 0.774, (3, 0): 0.708, (3, 2): 0.721}

Tip: We recommend reproducing this tutorial’s code snippets also including the product names ['pl', 'p2',
'p3', 'p4'] as an argument variable_names to PCPG, which changes the pcpg.edges and pcpg.nodes names.
We should also pass the same argument to get_bootstrap_values() in order to obtain a bootstrap_values
dataframe with product names as row and column indices.

10 Chapter 3. Tutorial

CHAPTER
FOUR

CODE DOCUMENTATION

4.1 PCPG class

class bipcpg.pcpg.PCPG(corr_matrix, variable_names=None)
Bases: object

Class to obtain a Partial Correlation Planar Graph (PCPG) network from a correlation matrix.'
Parameters

e corr_matrix (pandas.DataFrame/numpy.ndarray) — Correlation matrix displaying
correlations among variables in the system.

* variable_names (1ist) — Names of the variables in the system. The order of this list
should coincide with the order of rows and columns in corr_matrix.

This class includes methods to perform the necessary computations and obtain a networkx.Graph network
object. The PCPG algorithm consists in the following steps:

1. Find the Average influence (Al) between every ordered pair of variables in the system, i.e. those in the
input corr_matrix. See compute_avg_influence_matrix().

2. List the Als in order from largest to smallest, and,

3. Tterate through the list and add a directed edge corresponding to the pair of variables of the Al value in that
position if and only if (i) the reversed edge is not already in the network and (ii) the network’s planarity is
not broken by adding the edge. See create_network().

See the tutorial for further information.
Variables

* avg_influence_matrix — numpy.ndarray containing average influence values between
pairs of variables.

» avg_influence_df — pandas.DataFrame containing average influence values between
pairs of variables.

» influence_df - pandas.DataFrame containing influence values between pairs of vari-
ables.

» partial_corr_df — Multi-index pandas .DataFrame containing partial correlation values
between triple of variables.

* network — the PCPG network generated (a networkx.DiGraph directed graph object).

* nodes — Nodes in network.

! Kenett DY, Tumminello M, Madi A, Gur-Gershgoren G, Mantegna RN, Ben-Jacob E (2010) Dominating Clasp of the Financial Sector Revealed
by Partial Correlation Analysis of the Stock Market. PLoS ONE 5(12): e15032. <https://doi.org/10.1371/journal.pone.0015032>

11

https://bipcpg.readthedocs.io/en/latest/tutorial.html
https://doi.org/10.1371/journal.pone.0015032

biPCPG, Release 0.1.0

* edges — Edges in network.

e dict_var_names — dict containing variable numbers as keys and variables names as val-
ues.

References
add_edge_attribute (attr_data, attr_name)
Adds data as an attribute to edges in network.
Parameters

e attr_data (dict/pandas.DataFrame)— pandas.DataFrame or dict containing edge
attribute values.

e attr_name (str)— Name of attribute to be added to edges.

Note: If attr_dataisapandas.DataFrame, the row indices should the origin nodes and column indices
should be the target nodes. If attr_data is a dictionary, keys should be tuples of the form (origin_node,
target_node).

add_node_attribute(attr_data, attr_name)
Adds data as an attribute to nodes in network.

Parameters

e attr_data (dict/pandas.Series) — pandas.Series or dict containing node at-
tribute values.

e attr_name (str)— Name of attribute added.

Note: If edge_attribute_valuesisapandas.Series, its index should contain the node and its values
the node data. If edge_attribute_values is a dict, keys should be nodes and values should be node
data.

compute_assortativity (node_attribute, attr_type)
Compute node assortativity based on node_attribute of nodes.

Parameters

* node_attribute (str) - Name of node attribute in network by which to compute assor-
tativity.

* attr_type (str) — Either “qual” or “quant”. Indicates if node_attribute data is a
qualitative characteristic or a quantitative characteristic.

Returns Value of calculated assortativity.
Return type float

compute_avg_influence_matrix()
Compute average influences between every pair of variables in the system and put these in
avg_influence_matrix.

Returns None

compute_influence_avg_influence_partial_corr_dfs()
Compute partial correlations, influences and average influences between all variables in the system and put
these in partial_corr_df, influence_df and avg_influence_df respectively.

12 Chapter 4. Code documentation

biPCPG, Release 0.1.0

Returns None

create_network()
Create PCPG a networkx.DiGraph object with nodes: and edges found following the PCPG algorithm.

Returns None

find_edges()
Compute the edges in the PCPG network using the average influences in avg_influence_matrix.

Returns List of edges in the PCPG network
Return type list

4.2 Correlations Functions

bipcpg.correlations.compute_corr_matrix (matrix, critical_value=None)
Obtain a correlation matrix among the variables in a matrix. If critical value is passed, the correlation
matrix is filtered based on a statistical significance T-test where critical_value is the threshold value.

Parameters

e matrix (numpy.ndarray) — numpy.ndarray containing time series for the values of in-
terest with observations along axis 0 (rows) and variables along axis 1 (columns).

* critical_value (float)— Boundary of the acceptance region of the T-test performed.

Returns Correlation matrix displaying correlation coefficients between the columns (axis 1) of each
input matrix.

Return type numpy.ndarray

bipcpg.correlations.corr_pvalue_matrices (matrix)
Obtain a correlation matrix and p-value matrix for a matrix containing variables and observations.

Parameters matrix (numpy.ndarray) — 2-dimensional numpy.ndarray containing containing ob-
servations axis 0 and variables along axis 1.

Returns tuple containing correlation matrix showing correlation coefficients between columns of
input matrix and p-value matrix showing statistical significance of correlations.

Return type tuple

bipcpg.correlations.get_correlation_matrices_for_list_of matrices(matrices,
critical_value=None)
Obtain a correlation matrix and p-value matrix for each matrix (containing variables along the columns and
observations along the rows) in matrices. If critical value is passed, each correlation matrix is filtered
based on a statistical significance T-test where critical_value is the threshold value.

Parameters

* matrices (Iterable) — Iterable object containing of 2-dimensional numpy.ndarray s
with observations along axis O (rows) and variables along axis 1 (columns).

» critical_value (float)— Boundary of the acceptance region of the T-test performed.

Returns list of length len(list_time_series_matrices) containing correlation matrices displaying the
correlation coeflicients between the columns (axis 1) of each input matrix

Return type list

4.2. Correlations Functions 13

biPCPG, Release 0.1.0

4.3 Bootstrap functions

bipcpg.bootstrap.construct_corr_matrix_replicates_from_time_series_matrices(array_of matrices,
num_replicates,
criti-
cal_value=None)
Performs a bootstrap procedure on time series matrices to obtain correlation matrix replicates. If
critical_value is not None, the correlation matrices are filtered using a statistical significance T-test.

Parameters

e array_of matrices (numpy.ndarray)- 3-dimensional numpy .ndarray with axis O rep-
resenting elements of one of the sets in the bipartite system, axis 1 representing time series
observations and axis 2 representing elements of the remaining set in the bipartite system.

* num_replicates (int)— Number of correlation matrix replicates to be constructed.

e critical_value (float) - If passed, boundary of the acceptance region of the T-test per-
formed.

Returns Array containing mean of correlation matrix replicates in each batch.
Return type numpy.ndarray

bipcpg.bootstrap.get_bootstrap_values(timeseries_matrices, variable_names=None,
num_replicates=1000, critical_value=None)
Compute bootstrap values for edges in a PCPG network. This function takes a dataset in the form of a list or
numpy array of matrices with time series in its columns (see Dataset structure) performs a bootstrap procedure
that generates a total of num_replicates replicate PCPG matrices and finds the bootstrap value of each edge,
i.e. the fraction of times the edge appears in these networks. If critical_value is not None, the replicate
correlation matrices generated are filtered using a statistical significance T-test.

Parameters

* timeseries_matrices (list/numpy.ndarray) — Iterable containing the dataset for
which the PCPG network was generated. This should be a list containing 2d-
:class:numpy.ndarray” s whose columns contain observations for one of the the two sets of
variables in a bipartite dataset.

* variable_names (I1ist) — Names of variables along columns of each matrix in
timeseries_matrices

e num_replicates (int) — Number of replicates to generate in the bootstrap procedure.

e critical_value (float) - If passed, boundary of the acceptance region of the T-test per-
formed.

Returns pandas.DataFrame containing the bootstrap values of the directed edges in the PCPG
network. Note that the source of an edge is its row index and the target of the edge is its column
index.

Return type pandas.DataFrame

14 Chapter 4. Code documentation

biPCPG, Release 0.1.0

4.4 Util functions

bipcpg.utils.utils.get_degrees_df(G)
Get a pandas.DataFrame containing the degree, in-degree and out-degree information of the nodes in G.

Parameters G (networkx.DiGraph) — Directed network.
Returns pandas.DataFrame containing degree information.
Return type pandas.DataFrame

bipcpg.utils.utils.remove_reversed_duplicates (iterable)
For an iterable object containing other iterables, yield items which do not have a reversed duplicate in a position
with a smaller index.

Parameters iterable (Iterable)— An iterable object containing other iterables.
Returns Inner iterables which do not have a reversed duplicate in a position with a smaller index.
Return type Iterator[Iterable]

bipcpg.utils.utils.reshape_year_matrices_to_time_series_matrices(list_yearly_matrices)
For a list of numpy.ndarray s, switch the first dimension (list entries) for the second dimension (axis 0) of
matrices in the list.

Parameters list_yearly_matrices (1ist) — list of 2-dimensional numpy.ndarray s indexed
over time. Each matrix has one set of variables of the bipartite dataset along axis 0 (rows) and
the other set of variables in the bipartite dataset along axis 1 (columns).

Returns list of 2-dimensional numpy .ndarray indexed over the elements in the rows of the matrices
in list_yearly_matrices. Axis 0 (rows) of each matrix is now indexed over time, i.e. the
dimension of the elements in 1ist_yearly_matrices.

Return type list

Example This can be used transform a list of matrices (one per year) into a list of time series matrices.
Say we have a list my_list containing matrices (one per year) with the exports every country
(rows) made for every product (columns). We can then transform this into a list of matrices (one
per country) with time series observations along the rows and products along the columns.

>>> my_list = [np.array([[1,2],[3,41]1),
np.array([[5,6],[7,8]11),
np.array([[9,10],[11,12]11)]
>>> my_list_transformed = transform_year_matrices_to_time_series_matrices(my_list)
my_list_transformed

[

array([[1, 27,
[5, 6],
[9, 1011),

array([[3, 4],
L7, 81,
[11, 121D

]

bipcpg.utils.utils.transform_3level_nested_dict_into_df (nested_dict)
Transform a nested dictionary with three levels into a stacked pandas.DataFrame with a 2 level multi-index.

Parameters nested_dict (dict) — Three level nested dictionary to be transformed.

4.4. Util functions 15

biPCPG, Release 0.1.0

Returns pandas.DataFrame with 2-level multi-index. multi-index level O corresponds to outermost
nested_dict keys, multi-index level 1 corresponds to nested_dict middle level keys and
columns correspond to nested_dict innermost keys.

Return type pandas.DataFrame

bipcpg.utils.utils.transform_3level_nested_dict_into_stacked_df (nested_dict, name=None)
Transform a nested dictionary with three levels into a stacked pandas.DataFrame with a 3 level multi-index
and a single column. If name is passed, set the name of the column to name.

Parameters
» nested_dict (dict) — Three level nested dictionary to be transformed.
* name (str)— Name of single column found in returned pandas.DataFrame

Returns Stacked dataframe with multi-index level O corresponding to outermost nested_dict keys,
multi-index level 1 corresponding to nested_dict middle level keys and multi-index level 2 cor-
responding to nested_dict innermost keys.

Return type pandas.DataFrame

bipcpg.utils.communities_utils.communities_data(G, **la_kwds)
Perform a community detection procedure on graph G and return relevant results for plotting.

Parameters
* G (networkx.Graph) — networkx graph on which to perform community detection.
* la_kwds — keyword arguments passed on to leidenalg. find_partition().
Returns
* G_igraph igraph.Graph - igraph graph object equivalent to G.
* partition leidenalg.VertexPartition - Graph partition.

* tup_nodes_num_nodes tuple - a fuple containing list of nodes sorted by community and
list of number of nodes per community.

Return type tuple

bipcpg.utils.communities_utils.get_igraph_network_and_partition(G, **la_kwds)
Obtain an igraph graph and a partition from a networkx graph.

Parameters

* G (networkx.Graph) — networkx graph to be converted into igraph graph.

* la_kwds — keyword arguments passed on to leidenalg. find_partition().
Returns

* Higraph.Graph - igraph graph object.

* partition leidenalg.VertexPartition - Graph partition.

Return type tuple

16 Chapter 4. Code documentation

CHAPTER
FIVE

THEORY

5.1 Partial Correlation Planar Algorithm

The Partial Correlation Planar Graph (PCPG)' is based on partial correlation which measures the effect that a random
variable Z has on the correlation between two other random variables X and Y. The partial correlation is defined in
terms of the Pearson correlations p(+, -) between the three variables as

V=P (X, 2= (Y, 2)]
A small value of p(X,Y : Z) may be ambiguous, as this could be due to the correlations among the three variables
being small; or due to variable Z having a strong effect on the correlation between X and Y, which is generally the

interesting case. In order to discriminate between these two cases the correlation influence or influence of variable Z
on the pair of elements X and Y is used. This is defined as

p(X)Y : Z)=

dX,)Y : Z)=p(X,Y) - p(X,Y : Z).

Finally, the metric on which the PCPG is built is the average influence of variable Z on the correlations between X
and all other variables in the system. This is given by

An important detail is that, in general, d(X : Z) # d(Z : X). The largest among these two quantities indicates the
main direction of influence between X and Z, as influence is generally bidirectional. The difference between these two
values are often small, which makes a bootstrap procedure necessary in order to asses the confidence in the direction
of the average influence, as well as the average influence values.

The construction algorithm of a PCPG network starts with a list of the IV (/N — 1) average influence values in decreasing
order and an empty graph of N nodes and no edges, where IV is the number of variables in the system. We then cycle
through the sorted list, starting with the largest average influence value found, e.g. d(J : I). The edge I — J is
included in the network if and only if the resulting network is still planar and the edge J — I has not been included
already.

We stop adding edges if adding the next edge in the list would break the planarity of the graph. This procedure ensures
two things: (i) only the largest among d(X : Z) and d(Z : X) will be included in the network, and (ii) the final network
has 3(N — 2) edges. The end result of this procedure is what we refer to as the PCPG network, G.

Naturally, we also obtain the average influence d associated to each edge in G, as well as the network’s adjacency matrix
A defined as

1 ifedgel — J € G,
Ar g = :
0 otherwise.

I Kenett DY, Tumminello M, Madi A, Gur-Gershgoren G, Mantegna RN, Ben-Jacob E (2010) Dominating Clasp of the Financial Sector Revealed
by Partial Correlation Analysis of the Stock Market. PLoS ONE 5(12): e15032. <https://doi.org/10.1371/journal.pone.0015032>

17

https://doi.org/10.1371/journal.pone.0015032

biPCPG, Release 0.1.0

5.2 References

18 Chapter 5. Theory

CHAPTER
SIX

INDICES AND TABLES

* genindex
* modindex

¢ search

19

biPCPG, Release 0.1.0

20 Chapter 6. Indices and tables

b

bipcpg.bootstrap, 14
bipcpg.correlations, 13
bipcpg.utils.communities_utils, 16
bipcpg.utils.utils, 15

PYTHON MODULE INDEX

21

biPCPG, Release 0.1.0

22 Python Module Index

A

add_edge_attribute() (bipcpg.pcpg.PCPG method),
12

add_node_attribute() (bipcpg.pcpg.PCPG method),
12

B

bipcpg.bootstrap

module, 14
bipcpg.correlations

module, 13
bipcpg.utils.communities_utils

module, 16
bipcpg.utils.utils

module, 15

C

communities_data() (in module
bipcpg.utils.communities_utils), 16

compute_assortativity() (bipcpg.pcpg. PCPG
method), 12

compute_avg_influence_matrix()
(bipcpg.pcpg.PCPG method), 12

compute_corr_matrix() (in module
bipcpg.correlations), 13

INDEX

get_igraph_network_and_partition() (in module
bipcpg.utils.communities_utils), 16

M

module
bipcpg.bootstrap, 14
bipcpg.correlations, 13
bipcpg.utils.communities_utils, 16
bipcpg.utils.utils, 15

P

PCPG (class in bipcpg.pcpg), 11

R

remove_reversed_duplicates() (in module
bipcpg.utils.utils), 15

reshape_year_matrices_to_time_series_matrices()
(in module bipcpg.utils.utils), 15

T

transform_3level_nested_dict_into_df() (in
module bipcpg.utils.utils), 15

transform_3level_nested_dict_into_stacked_df()
(in module bipcpg.utils.utils), 16

compute_influence_avg_influence_partial_corr_dfs()

(bipcpg.pcpg.PCPG method), 12

construct_corr_matrix_replicates_from_time_series_matrices()

(in module bipcpg.bootstrap), 14
corr_pvalue_matrices() (in module
bipcpg.correlations), 13
create_network() (bipcpg.pcpg.PCPG method), 13

F

find_edges) (bipcpg.pcpg.PCPG method), 13

G

get_bootstrap_values() (in module
bipcpg.bootstrap), 14

get_correlation_matrices_for_list_of_matrices()

(in module bipcpg.correlations), 13
get_degrees_df () (in module bipcpg.utils.utils), 15

23

	biPCPG
	References

	Installation
	Tutorial
	Dataset structure
	Computing the average correlation matrix
	Computing the PCPG network
	Computing edge bootstrap values

	Code documentation
	PCPG class
	Correlations Functions
	Bootstrap functions
	Util functions

	Theory
	Partial Correlation Planar Algorithm
	References

	Indices and tables
	Python Module Index
	Index

